Economics at your fingertips  

Numerical investigation of laminar forced convection of water upwards in a narrow annulus at supercritical pressure

E. Hassan Zaim and S.A. Gandjalikhan Nassab

Energy, 2010, vol. 35, issue 10, 4172-4177

Abstract: In the present work, convection heat transfer of water at supercritical pressure in a narrow annulus at low Reynolds numbers (less than 1500) has been investigated numerically. The continuity, momentum and energy equations have been solved simultaneously using computational fluid dynamics techniques with the inlet Reynolds number ranging from 250 to 1000, Grashof number from 2.5 × 105 to 1 × 106 and the inlet fluid temperature from 360 °C to 380 °C. In all of the case studies, a sub-cooled water flow at supercritical pressure (25 MPa) and a temperature close to the pseudo-critical point enters the annular channel with constant heat flux at inner wall surface and insulated at outer wall. To calculate the velocity and temperature distributions of the flow, discretized form of the governing equations in the cylindrical coordinate system are obtained by the finite volume method and solved by the SIMPLE algorithm. It has been shown that the effect of buoyancy is strong and causes extensive increase in velocity near the inner wall, and consequently an increase in the convective heat transfer, which is desirable. Besides, the effects of inlet Reynolds number, Grashof number and inlet temperature on the velocity distribution and also on the heat transfer have been investigated.

Keywords: Supercritical water; Heat transfer; Computational fluid dynamics; Annulus (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-09-29
Handle: RePEc:eee:energy:v:35:y:2010:i:10:p:4172-4177