EconPapers    
Economics at your fingertips  
 

Influence of channel depth on the performance of solar air heaters

Wei Sun, Jie Ji and Wei He

Energy, 2010, vol. 35, issue 10, 4201-4207

Abstract: In the design of solar air heaters (SAHs), channel depth is a principal variable to be fixed. In this paper, the effect of the channel depth on the energy gain of type I and type III SAHs has been investigated by computational fluid dynamics (CFD) simulations. Laminar model and k–ω turbulence model of Wilcox are used for the prediction of flow and temperature field in SAHs. Our study shows that the heat transfer corresponding to the temperature distribution across the channel in SAH varies greatly with the change of channel depth. Based on the first and second laws of thermodynamics, the optimal channel depths for type I and type III SAHs with black-painted absorber are suggested as 10 mm. It is found that with selective coating, the absorber plate should be further from the cover glazing in order to prevent excessive convective heat loss, the distance is better of no less than 20 mm. In type III SAH, air flows in two channels above and below the absorber plate, the depth ratio of up channel to down channel should be no less than 1.

Keywords: Solar air heater; CFD simulation; Channel depth; Heat transfer; Exergy (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210003701
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:10:p:4201-4207

DOI: 10.1016/j.energy.2010.07.006

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:35:y:2010:i:10:p:4201-4207