Economics at your fingertips  

Effect of gas-diffusion electrode material heterogeneity on the structural integrity of polymer electrolyte fuel cell

K.K. Poornesh, Chongdu Cho, Do-Young Kim and Yongsug Tak

Energy, 2010, vol. 35, issue 12, 5241-5249

Abstract: In polymer electrolyte fuel cell (PEFC), gas-diffusion electrode (GDE) plays very significant role in force transmission from bipolar plate to the membrane. This paper investigates the effects of material heterogeneities of gas-diffusion electrode layer (gas-diffusion layer (GDL) and catalyst layer (CL)) on the assembly stress levels of single PEFC stack. In addition, we adopt a force transfer mechanism in a single fuel cell stack based on material heterogeneities of GDL and CL to understand the limitations and advantages associated with it through numerical analyses. Nanoscale heterogeneities in GDE are effectively implemented in the simulation cases along with the membrane swelling. Influence of presence or absence of CL interlayer in the numerical environment is found to have significant impact on the adjacent layers as well as interfaces.

Keywords: Polymer electrolyte fuel cell (PEFC); Catalyst layer; Gas-diffusion layer; Swelling; Structural integrity; Heterogeneity (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (4) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-09-29
Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5241-5249