EconPapers    
Economics at your fingertips  
 

Exergy analysis on throttle reduction efficiency based on real gas equations

Yuxi Luo and Xuanyin Wang

Energy, 2010, vol. 35, issue 1, 181-187

Abstract: This paper proposes an approach to calculate the efficiency of throttling in which the exergy (available energy) is used to evaluate the energy conversion processes. In the exergy calculation for real gases, a difficult part of integration can be removed by judiciously advised thermodynamic paths; the compressibility factor is calculated by using Peng–Robinson (P–R) equation. It is found that the largest deviation between the exergies calculated by the real gas equation and ideal gas assumption is about 1%. Because the exergy is a function of the pressure and temperature, the Joule–Thomson coefficients are used to calculate the temperature changes of throttling, based on the compressibility factors of the Soave–Redlich–Kwong (S–R–K) and P–R equations, and the temperature decreases are compared with those calculated by empirical formula. The result shows that the heat exergy contributes very little in throttling. The simple equation of ideal gas is suggested to calculate the efficiency of throttling for air at atmospheric temperatures.

Keywords: Efficiency of throttling; Exergy; Compressibility factor; Joule–Thomson effect; Real gas (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209003946
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:1:p:181-187

DOI: 10.1016/j.energy.2009.09.008

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:35:y:2010:i:1:p:181-187