Exergoecology: A thermodynamic approach for accounting the Earth's mineral capital. The case of bauxite–aluminium and limestone–lime chains
Antonio Valero and
Alicia Valero
Energy, 2010, vol. 35, issue 1, 229-238
Abstract:
As man extracts minerals, the natural deposits become depleted in quantity and concentration, and hence the mineral wealth of the Earth decreases. This paper explains the exergoecological method used for calculating the mineral exergy bonus that Nature gives us for free for providing minerals concentrated in mines and not dispersed in the Earth's crust. The method is based on two concepts: Exergy and the Exergy cost. Exergy measures the minimum (reversible) work required to extract and concentrate the materials from a Reference Environment (RE) to the conditions found in Nature. This RE can be approximated to a completely degraded crepuscular planet with the absence of fossil fuels and mineral deposits. And the exergy cost accounts for the actual exergy required for accomplishing the same process with available technologies. These costs are complementary to the conventional extraction, land-recovering, processing and refining costs. The case studies of two industrial chains: bauxite–alumina–aluminium, and limestone–calcite–lime are presented and discussed. As the method provides values in energy units, the annual exergy decrease in the mineral endowment of the planet due to the extraction of minerals can now take into account the fossil fuel's exergy as well as the non-fuel mineral exergy costs.
Keywords: Exergoecology; Resources; Minerals; Exergy cost; Mineral exergy bonus; Aluminium industry; Lime industry (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209003995
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:1:p:229-238
DOI: 10.1016/j.energy.2009.09.013
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().