EconPapers    
Economics at your fingertips  
 

Exergy transfer in a porous rectangular channel

İrfan Kurtbaş, Nevin Celik and İbrahim Dinçer

Energy, 2010, vol. 35, issue 1, 451-460

Abstract: Present paper is performed to investigate the heat and exergy transfer characteristics of forced convection flow through a horizontal rectangular channel where open-cell metal foams of different pore densities such as 10, 20 and 30PPI (per pore inches) were situated. All of the bounding walls of the channel are subjected to various uniform heat fluxes. The pressure drop and heat transfer characteristics are presented by two important parametric values, Nusselt number (NuH) and friction factor (f), as functions of Reynolds number (ReH) and the wall heat flux (q). The Reynolds number (ReH) based on the channel height of the rectangular channel is varied from 600 to 33 000, while the Grashof number (GrDh) ranged from approximately 105–107 depending on q. Based on the experimental data, new empirical correlations are constructed to link the NuH. The results of all cases are compared to that of the empty channel and the literature. It is found that the results are in good agreement with those cited in the references. The mean exergy transfer Nusselt number (Nue) based on the ReH, NuH, Pr and q for a rectangular channel with constant heat flux is presented and discussed.

Keywords: Aluminum foams; Porous medium; Exergy; Rectangular channel flow (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209004447
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:1:p:451-460

DOI: 10.1016/j.energy.2009.10.011

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:35:y:2010:i:1:p:451-460