Economics at your fingertips  

Combustion characteristics of a stationary diesel engine fuelled with a blend of crude rice bran oil methyl ester and diesel

S. Saravanan, G. Nagarajan, G. Lakshmi Narayana Rao and S. Sampath

Energy, 2010, vol. 35, issue 1, 94-100

Abstract: The objective of the present work is to analyze the combustion characteristics of crude rice bran oil methyl ester (CRBME) blend (20% of CRBME with 80% no.2 diesel on volume basis) as a fuel in a stationary small duty direct injection (DI) compression ignition (CI) engine. When operating with CRBME blend the cylinder pressure was comparable to that of diesel. It was observed that the delay period and the maximum rate of pressure rise for CRBME blend were lower than those of diesel. The occurrence of maximum heat release rate advanced for CRBME blend with lesser magnitude when compared to diesel. CRBME blend requires more crank angle duration to release 50% & 90% of heat when compared with diesel. The brake specific fuel consumption of CRBME blend was found to be only marginally different from that of the diesel and its hourly fuel cost was higher than that of diesel. CRBME blend has lower smoke intensity and higher NOx emission than those of diesel. Since the measured parameters for CRBME blend differs only by a smaller magnitude, when compared with diesel, this investigation ensures the suitability of CRBME blend as fuel for CI engines with higher fuel cost.

Keywords: CRBME; CRBO; Blend; Combustion; Stationary diesel engine (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (19) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-09-29
Handle: RePEc:eee:energy:v:35:y:2010:i:1:p:94-100