CO2 emission balances for different black liquor gasification biorefinery concepts for production of electricity or second-generation liquid biofuels
Karin Pettersson and
Simon Harvey
Energy, 2010, vol. 35, issue 2, 1101-1106
Abstract:
Black liquor gasification (BLG) is currently being developed as an alternative technology for energy and chemical recovery at chemical pulp mills. This study examines how different assumptions regarding systems surrounding the pulp mill affect the CO2 emission balances for different BLG concepts. The syngas from the gasification process can be used for different applications; this study considers production of renewable motor fuels and electricity generation. Both a market pulp mill and an integrated pulp and paper mill are considered as host mill for the BLG plant. Furthermore, the consequences of limited availability of biomass are shown, i.e., increasing the use of biomass in a mill is not necessarily CO2-neutral. The results show that the potential to reduce CO2 emissions by introducing BLG is generally much higher for a market pulp mill than for an integrated pulp and paper mill. Electricity generation from the syngas is favoured when assuming high grid electricity CO2 emissions where as motor fuel production is favoured when assuming low grid electricity CO2 emissions. When considering the consequences of limited availability of biomass, the CO2 emission balances are strongly affected, in some cases changing the results from a decrease to an increase of the CO2 emissions.
Keywords: Black liquor gasification; CO2 emissions; Biofuels; Well-to-wheel; Biorefinery (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209002308
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:2:p:1101-1106
DOI: 10.1016/j.energy.2009.06.003
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().