Variation on anthracite combustion efficiency with CeO2 and Fe2O3 addition by Differential Thermal Analysis (DTA)
Xuzhong Gong,
Zhancheng Guo and
Zhi Wang
Energy, 2010, vol. 35, issue 2, 506-511
Abstract:
Effects of CeO2 and Fe2O3 on anthracite combustion efficiency were investigated using differential thermal analysis (DTA). Based on heat release (QD) of anthracite as well as anthracite with CeO2 and anthracite with Fe2O3 additions against α-Al2O3 in DTA experiment, effects of additives CeO2 and Fe2O3 on anthracite combustion efficiency were evaluated. Under the same experimental conditions, heat releases of raw anthracite, anthracite with CeO2 and anthracite with Fe2O3 were 11.04kJ/g, 11.30kJ/g and 11.42kJ/g, respectively, indicating that anthracite combustion efficiency was improved by addition of CeO2 and Fe2O3. To confirm the above results, carbon transfer was monitored using Thermogravimetric analysis Fourier transform infrared (TGA-FTIR) and Carbon-Sulfur analyzer during catalytic combustion process. The results indicated that CO2 emission was increased, whereas CO emission and residual carbon of ash were decreased, being in accordance with the results of DTA. Finally, according to analyses of ignition temperature and catalytic combustion process, the possible mechanism of catalytic combustion of anthracite was proposed.
Keywords: Combustion efficiency; Catalytic combustion; DTA; Heat release (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209004502
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:2:p:506-511
DOI: 10.1016/j.energy.2009.10.017
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().