Economics at your fingertips  

Variable geometry gas turbines for improving the part-load performance of marine combined cycles – Gas turbine performance

F. Haglind

Energy, 2010, vol. 35, issue 2, 562-570

Abstract: The part-load performance of gas and steam turbine combined cycles intended for naval use is of great importance, and it is influenced by the gas turbine configuration and load control strategy. This paper is aimed at quantifying the effects of variable geometry on the gas turbine part-load performance. Subsequently, in another paper, the effects of variable geometry on the part-load performance for combined cycles used for ship propulsion will be presented. Moreover, this paper is aimed at developing methodologies and deriving models for part-load simulations suitable for energy system analysis of various components within gas turbines. Two different gas turbine configurations are studied, a two-shaft aero-derivative configuration and a single-shaft industrial configuration. When both gas turbine configurations are running in part-load using fuel flow control, the results indicate better part-load performance for the two-shaft gas turbine. Reducing the load this way is accompanied by a much larger decrease in exhaust gas temperature for the single-shaft gas turbine than for the two-shaft configuration. As used here, the results suggest that variable geometry generally deteriorates the gas turbine part-load performance.

Keywords: Variable geometry; Gas turbine; Combined cycle; Part-load; Performance (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (7) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-09-29
Handle: RePEc:eee:energy:v:35:y:2010:i:2:p:562-570