EconPapers    
Economics at your fingertips  
 

Energy efficiency comparison of forced-air versus resistance heating devices for perioperative hypothermia management

Yilmaz Bayazit and Ephraim M. Sparrow

Energy, 2010, vol. 35, issue 3, 1211-1215

Abstract: Hypothermia is a state in which the temperature of a human body is below the normal temperature, with the onset of the hypothermic state commonly regarded as 36°C. This state may be encountered due to exposure to a very cold environment in the outdoors or, surprisingly, in a hospital operating room. In the latter situation, the diminution of metabolic heat generation, coupled with moderate temperatures in the surroundings and absence of a covering over the afflicted parts of the body, creates the possibility of hypothermia. There are several available devices that are designed to ward off the onset of hypothermia. These currently most frequently used devices can be placed in two categories: (a) convective air warming and (b) direct-contact heat conduction. The warming principles that underlie these two approaches are distinctly different. Furthermore, the energy efficiencies of the two approaches differ significantly. The energy penalty which results from these different efficiencies may be compounded by the fact that the portion of the input energies to these devices which escapes into the operating room ambient must be extracted to maintain a comfortable temperature for the surgical staff. Since energy-extracting equipments such as air-conditioning machines are far from being perfectly efficient, the heat-extraction process also introduces wasted energy.

Keywords: Medical device; Energy efficiency; Hypothermia (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209004198
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:3:p:1211-1215

DOI: 10.1016/j.energy.2009.09.026

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:35:y:2010:i:3:p:1211-1215