The fossil energy/climate change crunch: Can we pin our hopes on new energy technologies?
C. Gonçalves da Silva
Energy, 2010, vol. 35, issue 3, 1312-1316
Abstract:
There is a growing perception by society of the risks of dramatic global climate changes due to anthropogenic greenhouse gases, in particular energy related emissions of CO2. This has spurred a renewed interest in carbon free or carbon neutral technologies for converting sources of renewable primary energy to electricity and to transportation fuels. However, it takes energy to produce energy, even when the primary source is energetically cost free, such as solar or wind. The aim of this letter is to present a model which allows the simulation of the energy costs of the deployment of a new energy technology. We show that the new technology may actually be an energy sink, instead of an energy source, relative to the global total primary energy supply (TPES) for many years or decades, depending on its intrinsic energy costs and deployment path, even though stated aims for its gross energy output are achieved. As expected, the energy payback time of the conversion devices, as well as fuel and maintenance costs are critical parameters. We illustrate the general model with simulations of the deployment of photovoltaic electricity, at global and national levels.
Keywords: Renewable energies; Deployment strategies; Energy costs; Net energy transfer (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209004873
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:3:p:1312-1316
DOI: 10.1016/j.energy.2009.11.013
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().