A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends
T.K. Gogoi and
D.C. Baruah
Energy, 2010, vol. 35, issue 3, 1317-1323
Abstract:
Among the alternative fuels, biodiesel and its blends are considered suitable and the most promising fuel for diesel engine. The properties of biodiesel are found similar to that of diesel. Many researchers have experimentally evaluated the performance characteristics of conventional diesel engines fuelled by biodiesel and its blends. However, experiments require enormous effort, money and time. Hence, a cycle simulation model incorporating a thermodynamic based single zone combustion model is developed to predict the performance of diesel engine. The effect of engine speed and compression ratio on brake power and brake thermal efficiency is analysed through the model. The fuel considered for the analysis are diesel, 20%, 40%, 60% blending of diesel and biodiesel derived from Karanja oil (Pongamia Glabra). The model predicts similar performance with diesel, 20% and 40% blending. However, with 60% blending, it reveals better performance in terms of brake power and brake thermal efficiency.
Keywords: Biodiesel; Diesel engine; Cycle simulation; Karanja oil (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209004885
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:3:p:1317-1323
DOI: 10.1016/j.energy.2009.11.014
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().