Performance improvement of a 70 kWe natural gas combined heat and power (CHP) system
X.L. Zhao,
L. Fu,
S.G. Zhang,
Y. Jiang and
H. Li
Energy, 2010, vol. 35, issue 4, 1848-1853
Abstract:
Combined heat and power is the simultaneous production of electricity and heat. CHP plants produce energy in an efficient way. A natural gas CHP system based on an internal combustion engine (ICE) is described, which has been set up at the Building Energy Research Center in Beijing, China. The system is composed of an ICE, a flue gas heat exchanger, a jacket water heat exchanger and other assistant facilities. The ICE generates power on-site, and the exhaust of the ICE is recovered by the flue gas heat exchanger, and the heat of the engine jacket is recovered by the jacket water heat exchanger to district heating system. In order to improve the performance of the system, an absorption heat pump (AHP) is adopted. The exhaust of the ICE drives the AHP to recover the sensible and latent heat step by step, and the temperature of the exhaust could be lowered to below 30 °C. In this paper, the performance of the new system were tested and compared with conventional cogeneration systems. The results show that the new CHP system could increase the heat utilization efficiency 10% compared to conventional systems in winter. All the results could be valuable references for the improvement of the CHP system.
Keywords: CHP; Cogeneration; Energy saving; ICE (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210000071
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:4:p:1848-1853
DOI: 10.1016/j.energy.2010.01.005
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().