EconPapers    
Economics at your fingertips  
 

Thermoeconomic optimization of a hybrid pressurized water reactor (PWR) power plant coupled to a multi effect distillation desalination system with thermo-vapor compressor (MED-TVC)

Kambiz Ansari, Hoseyn Sayyaadi and Majid Amidpour

Energy, 2010, vol. 35, issue 5, 1981-1996

Abstract: Thermoeconomic optimization of a typical 1000 MW Pressurized Water Reactor (PWR) nuclear power plant coupled to a Multi Effect Distillation (MED) desalination system with thermo-vapor compressor (TVC) is performed. A thermodynamic modeling based on the energy and exergy analysis is performed while economic modeling is developed based on the Total Revenue Requirement (TRR) method. The objective function based on the thermoeconomic analysis is obtained. The proposed cogeneration plant, for simultaneous production of power and fresh water, including sixteen decision variables is proposed for thermoeconomic optimization in which the goal is minimizing the cost of system product (including the cost of generated electricity and fresh water). The optimization process is performed using a stochastic/deterministic optimization approach namely as Genetic Algorithm. It is found that thermoeconomic optimization aims at reduction of sub-components total costs by reducing either the cost of inefficiency or the cost of owning the components, whichever is dominant. For some components such as evaporators, the improvement is obtained by reducing the owning cost of the sub-system at the cost of reduction of the thermodynamic efficiency. For components like as TVC + de-superheater, improvement is achieved by increasing the thermodynamic efficiency or decreasing the inefficiency cost.

Keywords: Nuclear desalination; Multi effect distillation desalination; PWR power plant; Genetic algorithm; TRR method; Thermoeconomic (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210000150
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:5:p:1981-1996

DOI: 10.1016/j.energy.2010.01.013

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:35:y:2010:i:5:p:1981-1996