Numerical model and investigations of the externally heated valve Joule engine
Jerzy Wojewoda and
Zbyszko Kazimierski
Energy, 2010, vol. 35, issue 5, 2099-2108
Abstract:
The mineral fuels used recently, i.e., oil and gas, will be soon exploited out. This paper presents an idea of the engine where any fuel or solar heat can be used as a source of energy. The proposed model is an externally heated, 2-stroke, valve engine (EHVE). This is a piston-type engine, entirely different from the well-known Stirling one, which is the best known example of such a solution. It works in a closed Joule cycle and is designed to produce a moderate amount of energy. The engine is composed of typical parts met in piston designs: an expander, a compressor, a heater, a cooler and, additionally, two recirculation blowers, which consume a small amount of produced power. An additional advantage is its working medium, which may be simply atmospheric air and the engine has a conventional crankshaft and an oil lubrication system. It has already been proven that operation of the EHVE is possible with satisfactory power and efficiency at the output. Comparisons of the EHVE action with and without recirculation blowers are performed.
Keywords: Externally heated valve air engine; Simulation; Numerical model (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210000307
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:5:p:2099-2108
DOI: 10.1016/j.energy.2010.01.028
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().