Economics at your fingertips  

Heat induced voltage generation in electrochemical cell containing zinc oxide nanoparticles

Anindita Mondal, Ruma Basu, Sukhen Das and Papiya Nandy

Energy, 2010, vol. 35, issue 5, 2160-2163

Abstract: The quest for alternative energy sources has stimulated interest in several new materials. Using an aqueous suspension of zinc oxide nanoparticles in specially-designed electrochemical cells we have observed significant voltage (maximum 498.0mV) and storage capacity (∼60h) upon thermal excitation. Voltage increased gradually with increasing temperature. The cells exhibited reasonable energy conversion efficiency (maximum 1.05%). Moreover, increases in efficiency and storage duration were observed with the insertion of a planar lipid membrane (PLM) within the electrochemical cell, since the hydrophobic barrier of the lipid membrane hindered back recombination of the charges produced by thermal excitation. The novelty of the cells lies in the fact that voltage was generated by utilizing the heat energy of solar radiation, as opposed to the light quanta of the solar influx used in conventional photovoltaic cells.

Keywords: Thermo-voltage; Zinc oxide nanoparticle; Electrochemical cell; Planar lipid membrane; Energy conversion efficiency (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-09-29
Handle: RePEc:eee:energy:v:35:y:2010:i:5:p:2160-2163