EconPapers    
Economics at your fingertips  
 

Diethyl ether as an ignition improver for biogas homogeneous charge compression ignition (HCCI) operation - An experimental investigation

K. Sudheesh and J.M. Mallikarjuna

Energy, 2010, vol. 35, issue 9, 3614-3622

Abstract: This paper deals with experimental investigations of a homogeneous charge compression ignition (HCCI) engine using biogas as a primary fuel and diethyl ether (DEE) as an ignition improver. The biogas is inducted and DEE is injected into a single-cylinder engine. For each load condition, best brake thermal efficiency DEE flow rate is determined. The results obtained in this study are also compared with those of the available biogas-diesel dual-fuel and biogas spark ignition (SI) modes. From the results, it is found that biogas-DEE HCCI mode shows wider operating load range and higher brake thermal efficiency (BTE) at all loads as compared to those of biogas-diesel dual-fuel and biogas SI modes. In HCCI mode, at 4.52bar BMEP, as compared to dual-fuel and SI modes, BTE shows an improvement of about 3.48 and 9.21% respectively. Also, nitric oxide (NO) and smoke emissions are extremely low, and carbon monoxide (CO) emission is below 0.4% by volume at best brake thermal efficiency points. Also, in general, in HCCI mode, hydrocarbon (HC) emissions are lower than that of biogas SI mode. Therefore, it is beneficial to use biogas-DEE HCCI mode while using biogas in internal combustion engines.

Keywords: Biogas; Diethyl ether; HCCI; Ignition improver (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (8) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210002604
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:9:p:3614-3622

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Series data maintained by Dana Niculescu ().

 
Page updated 2017-09-29
Handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3614-3622