Economics at your fingertips  

Modeling stump biomass of stands using harvester measurements for adaptive energy wood procurement systems

Lauri Vesa and Teijo Palander

Energy, 2010, vol. 35, issue 9, 3717-3721

Abstract: The value and volumes of industrial stump fuel supply are increasing for energy production. Accurate estimates of aboveground and belowground biomass of trees are important when estimating the potential of stumps as a bioenergy source. In this study two stump biomass equations were adapted and tested using them as calibrated stump biomass models computed as the cumulative sum by a local stand. In addition, variables derived from stem measurements of the forest harvester data were examined to predict stump biomass of a stand by applying regression analysis. The true stump yield (dry weight) was used as the reference data in the study. Both biomass models performed well (adjusted R2 ˜ 0.84) and no advance was found in using other stem dimensions as independent variables in the model. The stand-level model can be used in innovative stump biomass prediction tools for increasing efficiency of energy wood procurement planning to stands within a certain area. In practice, wood procurement managers would need to adapt developed system and decide whether the degree of accuracy/precision provided by the models is acceptable in their local stand harvesting conditions.

Keywords: Energy wood; Planning system; Forest harvester; Adaptive methods (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-09-29
Handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3717-3721