Analysis of a 50kW organic Rankine cycle system
Chi-Ron Kuo,
Sung-Wei Hsu,
Kai-Han Chang and
Chi-Chuan Wang
Energy, 2011, vol. 36, issue 10, 5877-5885
Abstract:
This study analyzes the system performance of a 50kW ORC system subject to influence of various working fluids. A dimensionless “figure of merit” combining the Jakob number, condensing temperature, and evaporation temperature is proposed for quantitatively screening working fluid as far as thermal efficiency is concerned. The thermal efficiency normally decreases with the rise of figure of merit, and the predictive ability of the proposed figure of merit is not only applicable to the present eighteen working fluids but is also in line with some existing literatures. Analysis of the typical ORC heat exchangers indicates that the dominant thermal resistance in the shell-and-tube condenser is on the shell side. Similarly, the dominant resistance is also on the refrigerant side for the plate evaporator. However, there is a huge difference of thermal resistance amid working fluid and water side in the preheating zone. Conversely, only a minor difference exists in the evaporation region. The extremely uneven resistance distribution in the plate heat exchanger can be resolved via an additional preheater having significant augmentation in the working fluid.
Keywords: Organic Rankine cycle; Thermal efficiency; Thermal resistance (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211005755
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:10:p:5877-5885
DOI: 10.1016/j.energy.2011.08.035
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().