The influence of swirl burner structure on the gas/particle flow characteristics
Lingyan Zeng,
Zhengqi Li,
Guangbo Zhao,
Jing Li,
Fucheng Zhang,
Shanping Shen and
Lizhe Chen
Energy, 2011, vol. 36, issue 10, 6184-6194
Abstract:
Improvements were made to a low-NOx axial swirl burner (LNASB), aimed at mitigating slagging in a 600-MWe boiler burning bituminous coal. The new design is referred to as improved low-NOx axial swirl burner (ILNASB). This paper describes investigations of the influence of swirl burner structure on the gas/particle flow characteristics using a three-dimensional particle-dynamics anemometer. In comparing results from both ILNASB and LNASB, a central recirculation zone is seen to form in the region x/d = 0.1–0.3 within the ILNASB. This zone had shifted from the region between primary and secondary air in LNASB to a region between inner and outer secondary air. In the vicinity of the burner outlet, particle volume flux is reduced significantly in the central recirculation zone. In contrast, this flux is high near the central axis in ILNASB, thus concentrating a great fraction of pulverized coal near the central axis. Form the study, the gas/particle flow characteristics of the ILNASB show that the improved burner has the ability to ease slagging and reduce NOx emissions.
Keywords: Swirl burner; Flow characteristics; PDA (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211005172
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:10:p:6184-6194
DOI: 10.1016/j.energy.2011.07.044
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().