Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis
Y.M. Kim,
D.G. Shin and
D. Favrat
Energy, 2011, vol. 36, issue 10, 6220-6233
Abstract:
Energy storage systems are becoming more important for load leveling, especially because of the widespread use of intermittent renewable energy. Compressed air energy storage (CAES) is a very promising method for energy storage because CAES relies on existing technologies, is less expensive, and easier to site and permit, as compared to pumped hydro storage. But, in the case of CAES employing hard rock caverns or man-made air vessels, although the smallest possible cavern volume is desirable in order to minimize the construction cost and optimize utilization of the given space, the operating pressure range in the cavern must be limited in order to reduce the deterioration in efficiency of the CAES system at off-design conditions. In this paper, a new constant-pressure CAES system combined with pumped hydro storage was studied to address the current problem associated with the conventional CAES systems. An energy and exergy analysis of the novel CAES system was performed in order to understand the operation characteristics of the system according to several different compression and expansion processes; we then examined the effects of the height of the storage cavern and heat transfer between two media (air, water) and the cavern on the performance of the novel CAES system.
Keywords: Compressed air energy storage (CAES); Constant-pressure CAES; Pumped hydro storage; Exergy (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (59)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211004889
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:10:p:6220-6233
DOI: 10.1016/j.energy.2011.07.040
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().