EconPapers    
Economics at your fingertips  
 

A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China

Shuai Wang, Lean Yu (), Ling Tang and Shouyang Wang

Energy, 2011, vol. 36, issue 11, 6542-6554

Abstract: Due to the distinct seasonal characteristics of hydropower, this study tries to propose a seasonal decomposition (SD) based least squares support vector regression (LSSVR) ensemble learning model for Chinese hydropower consumption forecasting. In the formulation of ensemble learning model, the original hydropower consumption series are first decomposed into trend cycle, seasonal factor and irregular component. Then the LSSVR with the radial basis function (RBF) kernel is used to predict the three different components independently. Finally, these prediction results of the three components are combined with another LSSVR to formulate an ensemble result for the original hydropower consumption series. In terms of error measurements and statistic test on the forecasting performance, the proposed approach outperforms all the other benchmark methods listed in this study in both level accuracy and directional accuracy. Experimental results reveal that the proposed SD-based LSSVR ensemble learning paradigm is a very promising approach for complex time series forecasting with seasonality.

Keywords: Hydropower consumption forecasting; LSSVR ensemble Learning; Seasonal decomposition (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211006074
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:11:p:6542-6554

DOI: 10.1016/j.energy.2011.09.010

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:36:y:2011:i:11:p:6542-6554