EconPapers    
Economics at your fingertips  
 

A hybrid fuzzy mathematical programming-design of experiment framework for improvement of energy consumption estimation with small data sets and uncertainty: The cases of USA, Canada, Singapore, Pakistan and Iran

A. Azadeh, M. Saberi, S.M. Asadzadeh and M. Khakestani

Energy, 2011, vol. 36, issue 12, 6981-6992

Abstract: Utilization of small data sets for energy consumption forecasting is a major problem because it could create large noise. This study presents a hybrid framework for improvement of energy consumption estimation with small data sets. The framework is based on fuzzy regression, conventional regression and design of experiment (DOE). The hybrid framework uses analysis of variance (ANOVA) and minimum absolute percentage error (MAPE) to select between fuzzy and conventional regressions. The significance of the proposed framework is three fold. First, it is flexible and identifies the best model based on the results of ANOVA and MAPE. Second, the framework may identify conventional regression as the best model for future energy consumption forecasting because of its dynamic structure, whereas in the case of uncertainty and ambiguity, previous studies assume that fuzzy regression provides better solutions and estimation. Third, it is ideal candidate for short data sets. To show the applicability of the hybrid framework, the data for energy consumption in Canada, United States, Singapore, Pakistan and Iran from 1995 to 2005 are considered and tested. This is the first study which introduces a hybrid fuzzy regression-design of experiment for improvement of energy consumption estimation and forecasting with relatively small data sets.

Keywords: Hybrid framework; Fuzzy regression; Small data sets; Uncertainty; Energy consumption; Design of experiment (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211004646
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:12:p:6981-6992

DOI: 10.1016/j.energy.2011.07.016

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:36:y:2011:i:12:p:6981-6992