EconPapers    
Economics at your fingertips  
 

Energy savings and emissions reductions for rewinding and replacement of industrial motor

M. Hasanuzzaman, N.A. Rahim, R. Saidur and S.N. Kazi

Energy, 2011, vol. 36, issue 1, 233-240

Abstract: Electric motors consume 30–80% of total industrial energy around the world. This study estimates the economic viability of replacing rewound and standard motors with high efficiency motors (HEMs) in the industrial sector. The efficiency of a motor is degraded when it is rewound and it is better to rewind a larger motor compared with a smaller motor. It was found that a HEM can save on average 5.5% of energy compared with a standard motor. In addition, the payback period was found to be reasonable when a motor is operated at a 50% load. HEMs will also save a sizeable amount of energy and reduce emissions. It was estimated that 67,868 MWh/year energy and US$ 4,343,531 per year could be saved by introducing HEMs. By contrast, 44,582 tons of CO2, 333 tons of SO2 and 122 tons of NOx emissions could be reduced through the aforementioned energy savings. This study found that rewound motors of a larger size and HEMs are economically viable.

Keywords: Energy savings; Industrial motor; Emission (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (41)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210006092
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:1:p:233-240

DOI: 10.1016/j.energy.2010.10.046

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-27
Handle: RePEc:eee:energy:v:36:y:2011:i:1:p:233-240