Two new high-performance cycles for gas turbine with air bottoming
M. Ghazikhani,
M. Passandideh-Fard and
M. Mousavi
Energy, 2011, vol. 36, issue 1, 294-304
Abstract:
The objective of this research is to model steam injection in the gas turbine with Air Bottoming Cycle (ABC). Based on an exergy analysis, a computer program has been developed to investigate improving the performance of an ABC cycle by calculating the irreversibility in the corresponding devices of the system. In this study, we suggest two new cycles where an air bottoming cycle along with the steam injection are used. These cycles are: the Evaporating Gas turbine with Air Bottoming Cycle (EGT-ABC), and Steam Injection Gas turbine with Air Bottoming Cycle (STIG-ABC). The results of the model show that in these cycles, more energy recovery and higher air inlet mass flow rate translate into an increase of the efficiency and output turbine work. The EGT-ABC was found to have a lower irreversibility and higher output work when compared to the STIG-ABC. This is due to the fact that more heat recovery in the regenerator in the EGT-ABC cycle results in a lower exhaust temperature. The extensive modeling performed in this study reveals that, at the same up-cycle pressure ratio and turbine inlet temperature (TIT), a higher overall efficiency can be achieved for the EGT-ABC cycle.
Keywords: ABC gas turbine; Steam injection; Exergy analysis; Overall efficiency (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210006031
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:1:p:294-304
DOI: 10.1016/j.energy.2010.10.040
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().