EconPapers    
Economics at your fingertips  
 

Combustion and NOx emissions characteristics of a down-fired 660-MWe utility boiler retro-fitted with air-surrounding-fuel concept

Feng Ren, Zhengqi Li, Guangkui Liu, Zhichao Chen and Qunyi Zhu

Energy, 2011, vol. 36, issue 1, 70-77

Abstract: Air-surrounding-fuel is a well-known concept used within tangential and wall-fired boilers. Here, we report for the first time on industrial experiments performed to study the effects of this concept on a 660 MWe full-scale down-fired boiler. Data are reported for the gas temperature distributions along the primary air and coal-mixed flows, furnace temperatures, gas compositions, for example O2, CO and NOx, and gas temperatures in the near-wall region. The influence of concentration control valve (CCV) opening on combustion and NOx emission in the furnace were determined. The results show that the flame stability, temperature distribution, unburnt carbon are influenced by both concentration ratios and fuel-rich flow velocities. As CCV opening increases, NOx emissions decrease from 2594 mg/m3 to 1895 mg/m3. Considering altogether economic benefits and environmental protection issues, 30% is the optimal value for the CCV opening.

Keywords: Air-surrounding-fuel; Down-fired boiler; NOx emission (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210006365
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:1:p:70-77

DOI: 10.1016/j.energy.2010.11.010

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:36:y:2011:i:1:p:70-77