EconPapers    
Economics at your fingertips  
 

Desalination using solar energy: Towards sustainability

Veera Gnaneswar Gude, Nagamany Nirmalakhandan and Shuguang Deng

Energy, 2011, vol. 36, issue 1, 78-85

Abstract: This paper describes the theoretical rationale for a new low temperature phase-change desalination process, and six examples of applications to illustrate how this process can be engineered for sustainable desalination. In this process, brackish water is evaporated at near-ambient temperatures under near-vacuum pressures created by the barometric head without any mechanical energy input. Thermodynamic advantages and benefits of low temperature phase-change desalination are discussed and results from simulation studies and a prototype test system are presented. Three of the examples illustrate how the proposed process can be driven by solar energy: a) utilizing direct solar energy; b) inclusion of an external reflector; c) utilizing photovoltaic energy during non-sunlight hours. The other examples illustrate how the proposed process can be driven by waste heat: i) waste heat rejected by an absorption refrigeration unit driven by grid power; ii) waste heat rejected by an absorption refrigeration unit driven by solar collectors; and iii) waste heat rejected by an absorption refrigeration unit supported by a photovoltaic array. Merits of utilizing solar energy and process waste heat in reducing energy consumption and greenhouse gas emissions are discussed in detail.

Keywords: Desalination; Solar energy; Thermal energy storage; Solar still; Sustainability; Renewable energy (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210006341
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:1:p:78-85

DOI: 10.1016/j.energy.2010.11.008

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:36:y:2011:i:1:p:78-85