EconPapers    
Economics at your fingertips  
 

Sustainable ethanol production from lignocellulosic biomass – Application of exergy analysis

Karina Ojeda, Eduardo Sánchez and Viatcheslav Kafarov

Energy, 2011, vol. 36, issue 4, 2119-2128

Abstract: The sustainability of the second-generation biofuels requests to confirm that the energy produced from lignocellulosic biomass is significantly greater than the energy consumed in the process. As lignocellulosic biomass does not affect the food supply, sugarcane bagasse was analyzed as a raw material for second-generation biofuels production. Exergy analysis serves as a unified and effective tool to evaluate the global process efficiency. Exergy analysis evaluates the performance of sugarcane bagasse and its sustainability in the bioethanol production process. In this work, four ethanol production topologies using the typical daily amount of residual biomass produced by the sugar industry were compared. The exergy analysis concept is effective in screening design alternatives with the lowest environmental impact for second-generation bioethanol fuel production from renewable resources. This study was executed by the use of the Aspen Plus® program and other software developed by the authors.

Keywords: Exergy; Sustainability; Second-generation bioethanol (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210004536
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:4:p:2119-2128

DOI: 10.1016/j.energy.2010.08.017

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:36:y:2011:i:4:p:2119-2128