Greenhouse gases (GHG) emissions reduction in a power system predominantly based on lignite
V. Taseska,
N. Markovska,
A. Causevski,
T. Bosevski and
J. Pop-Jordanov
Energy, 2011, vol. 36, issue 4, 2266-2270
Abstract:
In this paper the GHG mitigation potential of a power system with prevailing use of lignite is assessed through the example of the Macedonian power system. The analysis is conducted using the WASP model in order to develop three different scenarios (business as usual – BAU and two mitigation scenarios) for the power system expansion over the period 2008–2025. In the first mitigation scenario two gas power plants with combined cycle are planned to replace some of the lignite-based capacities. The second mitigation scenario, besides the gas power plants, assumes electricity consumption reduction related to the large industrial consumers and an increased share of new renewable energy sources. Detailed calculations of the GHG emissions are made for all scenarios. The comparison of emissions in 2025 and in 2008 shows that the increase of 78% in the case of predominantly lignite BAU scenario is reduced to 41% by the first mitigation scenario, and to 14% by the second mitigation scenario. The mitigation costs appeared to be less then 10 $/t CO2-eq for the first mitigation scenario, and even negative for the second one.
Keywords: Greenhouse gases (GHG); Mitigation scenarios; Emission reduction (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210002021
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:4:p:2266-2270
DOI: 10.1016/j.energy.2010.04.010
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().