Numerical study of evaporation by mixed convection of a binary liquid film
Abdelaziz Nasr,
Chokri Debbissi Hfaiedh and
Sassi Ben Nasrallah
Energy, 2011, vol. 36, issue 5, 2316-2327
Abstract:
This paper deals with a numerical analysis of the evaporation of binary liquid film. The film is falling down on one plate of a vertical channel under mixed convection channel. The first plate of a vertical channel is externally submitted to a uniform heated flux q1 while the second one (y=d) is dry and isothermal. The liquid mixture consists of water (the more volatile component) and ethylene glycol while the gas mixture has three components: dry air, water vapour and ethylene-glycol vapour. The results concern the effects of the inlet parameters in the gas and in the liquid film on the interfacial pressure, temperature and concentration profiles. The evolutions of the heat fluxes and of the water and mixture evaporation rates have been analysed. Results obtained show, in particular, that it is possible to increase the accumulated evaporation rate of water and of the liquid mixture when the inlet liquid concentration of ethylene glycol (the less volatile component) is less than 40%. This result has been explained by the fact that an increase of the inlet liquid concentration of ethylene glycol has two antagonistic effects on the accumulated evaporation rates of water and of liquid mixture.
Keywords: Binary liquid film; Binary mixture; Evaporation; Heat and mass transfer; Mixed convection; Laminar flow (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211001356
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:5:p:2316-2327
DOI: 10.1016/j.energy.2011.02.039
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().