EconPapers    
Economics at your fingertips  
 

Modeling and simulation of solar collector/regenerator for liquid desiccant cooling systems

Donggen Peng and Xiaosong Zhang

Energy, 2011, vol. 36, issue 5, 2543-2550

Abstract: Solar liquid collector/regenerator combines solar photothermic transformation and liquid regeneration together for solar energy-driven liquid desiccant cooling systems. A group of dimensionless heat and mass transfer equations describing the heat and mass transfer process in the solar C/R(Collector/Regenerator) were obtained by introducing total temperature difference (ΔT0) and dimensionless heat loss coefficient (h¯z). The increment of solution concentration ΔC was increased 2.9–3.5%/°C and 5.3%/°C for increasing unit inlet temperature of air stream and solution respectively and increased about 6.2%/(g/kg) and 0.9%/(g/kg) for decreasing unit inlet humidity ratio of air and solution concentration. Besides, the increasing number of heat transfer units (NTU), air-to-salt mass flow rate ratio (ASMR) and total temperature difference (ΔT0) can increase the performance of solution regeneration significantly. Compared to parallel flow regeneration, the performance of counterflow regeneration was increased about 10%.

Keywords: Solar energy; Solution regeneration; Total temperature difference; Heat loss (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211000715
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:5:p:2543-2550

DOI: 10.1016/j.energy.2011.01.048

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2543-2550