A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data
Ning Lu,
Jun Qin,
Kun Yang and
Jiulin Sun
Energy, 2011, vol. 36, issue 5, 3179-3188
Abstract:
Surface global solar radiation (GSR) is the primary renewable energy in nature. Geostationary satellite data are used to map GSR in many inversion algorithms in which ground GSR measurements merely serve to validate the satellite retrievals. In this study, a simple algorithm with artificial neural network (ANN) modeling is proposed to explore the non-linear physical relationship between ground daily GSR measurements and Multi-functional Transport Satellite (MTSAT) all-channel observations in an effort to fully exploit information contained in both data sets. Singular value decomposition is implemented to extract the principal signals from satellite data and a novel method is applied to enhance ANN performance at high altitude. A three-layer feed-forward ANN model is trained with one year of daily GSR measurements at ten ground sites. This trained ANN is then used to map continuous daily GSR for two years, and its performance is validated at all 83 ground sites in China. The evaluation result demonstrates that this algorithm can quickly and efficiently build the ANN model that estimates daily GSR from geostationary satellite data with good accuracy in both space and time.
Keywords: Global solar radiation; Artificial neural network; Geostationary satellite; Data compression (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211001630
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:5:p:3179-3188
DOI: 10.1016/j.energy.2011.03.007
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().