EconPapers    
Economics at your fingertips  
 

Concentrator performance within a centrally fuel-rich primary air burner: Influence of multiple levels

Zhichao Chen, Zhengqi Li, Qunyi Zhu, Lianjie Yang and Lizhe Chen

Energy, 2011, vol. 36, issue 7, 4041-4047

Abstract: Within a gas/particle two-phase testing facility, multi-level concentrators were investigated by obtaining gas/particle two-phase characteristics of each concentrator within a centrally fuel-rich swirl burner. Measurements of velocities, particle volume flux profiles and relative particle number concentrations were obtained and analyzed to assess the performance of these concentrators. For concentrators with fewer levels, peak values of the axial particle volume flux were observed to move away from the central axis of the primary air duct. The rich/lean air ratios near the exit of the last ring were much larger for the single-level concentrator than for the 2- and 3-level concentrators. Conversely, the concentration ratio is always smaller for the single-level concentrator than for the others. In addition, the performance ratio RCR near the exit is always larger than 2, indicating that the 2- and 3-level concentrators can achieve a stable flame. The resistance coefficient increased with fewer rings making up the concentrator.

Keywords: Gas/particle flow; Concentrator; Burner (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211002945
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:7:p:4041-4047

DOI: 10.1016/j.energy.2011.04.045

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:36:y:2011:i:7:p:4041-4047