EconPapers    
Economics at your fingertips  
 

Entropy generation due to natural convection in discretely heated porous square cavities

Ram Satish Kaluri and Tanmay Basak

Energy, 2011, vol. 36, issue 8, 5065-5080

Abstract: Optimization of industrial processes for higher energy efficiency may be effectively carried out based on the thermodynamic approach of entropy generation minimization (EGM). This approach provides the key insights on how the available energy (exergy) is being destroyed during the process and the ways to minimize its destruction. In this study, EGM approach is implemented for the analysis of optimal thermal mixing and temperature uniformity due to natural convection in square cavities filled with porous medium for the material processing applications. Effect of the permeability of the porous medium and the role of distributed heating in enhancing the thermal mixing, temperature uniformity and minimization of entropy generation is analyzed. It is found that at lower Darcy number (Da), the thermal mixing is low and the heat transfer irreversibility dominates the total entropy generation. In contrast, thermal mixing is improved due to enhanced convection at higher Da. Friction irreversibility is found to dominate the total entropy generation for higher Prandtl number (Pr) fluids at higher Da, whereas the heat transfer irreversibility dominates the total entropy generation for lower Pr fluids. Based on EGM analysis, it is established that larger thermal mixing at high Darcy number may not be always recommended as the total entropy production is quite large at high Darcy number. Overall, it is found that the distributed heating methodology with multiple heat sources may be an efficient strategy for the optimal thermal processing of materials.

Keywords: Entropy; Natural convection; Discrete heating; Square cavity (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211003781
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:8:p:5065-5080

DOI: 10.1016/j.energy.2011.06.001

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:36:y:2011:i:8:p:5065-5080