Generation expansion planning (GEP) – A long-term approach using system dynamics and genetic algorithms (GAs)
Adelino J.C. Pereira and
João Tomé Saraiva
Energy, 2011, vol. 36, issue 8, 5180-5199
Abstract:
This paper presents a model to solve the Generation Expansion Planning (GEP), problem in competitive electricity markets. The developed approach recognizes the presence of several generation agents aiming at maximizing their profits and that the planning environment is influenced by uncertainties affecting the demand, fuel prices, investment and maintenance costs and the electricity price. Several of these variables have interrelations between them turning it important to develop an approach that adequately captures the long-run behavior of electricity markets. In the developed approach we used System Dynamics to capture this behavior and to characterize the evolution of electricity prices and of the demand. Using this information, generation agents can then prepare their individual expansion plans. The resulting individual optimization problems have a mixed integer nature, justifying the use of Genetic Algorithms (GAs). Once individual plans are obtained, they are input once again on the System Dynamics model to update the evolution of the price, of the demand and of the capacity factors. This defines a feedback mechanism between the individual expansion planning problems and the long-term System Dynamics model. This approach can be used by a generation agent to build a robust expansion plan in the sense it can simulate different reactions of the other competitors and also by regulatory or state agencies to investigate the impact of regulatory decisions on the evolution of the generation system. Finally, the paper includes a Case Study to illustrate the use and the results of this approach.
Keywords: GEP; Investments; Electricity markets; System dynamics; GAs; Uncertainties (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211003987
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:8:p:5180-5199
DOI: 10.1016/j.energy.2011.06.021
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().