Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor
J. Riaza,
L. Álvarez,
M.V. Gil,
C. Pevida,
J.J. Pis and
F. Rubiera
Energy, 2011, vol. 36, issue 8, 5314-5319
Abstract:
The ignition temperature and burnout of a semi-anthracite and a high-volatile bituminous coal were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under oxy-fuel atmospheres (21%O2–79%CO2, 30%O2–70% O2 and 35%O2–65%CO2) were compared with those attained in air. The replacement of CO2 by 5, 10 and 20% of steam in the oxy-fuel combustion atmospheres was also evaluated in order to study the wet recirculation of flue gas. For the 21%O2–79%CO2 atmosphere, the results indicated that the ignition temperature was higher and the coal burnout was lower than in air. However, when the O2 concentration was increased to 30 and 35% in the oxy-fuel combustion atmosphere, the ignition temperature was lower and coal burnout was improved in comparison with air conditions. On the other hand, an increase in ignition temperature and a worsening of the coal burnout was observed when steam was added to the oxy-fuel combustion atmospheres though no relevant differences between the different steam concentrations were detected.
Keywords: Oxy-fuel combustion; Pulverized coal; Steam addition; Ignition; Burnout; Entrained flow reactor (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211004257
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:8:p:5314-5319
DOI: 10.1016/j.energy.2011.06.039
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().