EconPapers    
Economics at your fingertips  
 

Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks

Alvaro Linares-Rodríguez, José Antonio Ruiz-Arias, David Pozo-Vázquez and Joaquín Tovar-Pescador

Energy, 2011, vol. 36, issue 8, 5356-5365

Abstract: Four variables (total cloud cover, skin temperature, total column water vapour and total column ozone) from meteorological reanalysis were used to generate synthetic daily global solar radiation via artificial neural network (ANN) techniques. The goal of our study was to predict solar radiation values in locations without ground measurements, by using the reanalysis data as an alternative to the use of satellite imagery. The model was validated in Andalusia (Spain), using measured data for nine years from 83 ground stations spread over the region. The geographical location (latitude, longitude), the day of the year, the daily clear sky global radiation, and the four meteorological variables were used as input data, while the daily global solar radiation was the only output of the ANN. Sixty five ground stations were used as training dataset and eighteen stations as independent dataset. The optimum network architecture yielded a root mean square error of 16.4% and a correlation coefficient of 94% for the testing stations. Furthermore, we have successfully tested the forecasting capability of the model with measured radiation values at a later time. These results demonstrate the generalization capability of this approach over unseen data and its ability to produce accurate estimates and forecasts.

Keywords: Global solar radiation; Artificial neural network; Meteorological reanalysis; Solar maps; Prediction (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211004300
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:8:p:5356-5365

DOI: 10.1016/j.energy.2011.06.044

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:36:y:2011:i:8:p:5356-5365