Study and development of a high temperature process of multi-reformation of CH4 with CO2 for remediation of greenhouse gas
Chunguang Zhou,
Lan Zhang,
Artur Swiderski,
Weihong Yang and
Wlodzimierz Blasiak
Energy, 2011, vol. 36, issue 9, 5450-5459
Abstract:
A new carbon capture and recycle (CCR) system based on multi-reforming of CH4 with CO2 is proposed in this study. The aim was to develop a novel method to remediate greenhouse gases (CO2) using a high temperature (over 1173 K) process of reforming CH4 and/or O2, and/or H2O without catalysts. Using this novel method, the reactants are individually preheated to over 1173 K using a ceramic honeycomb heat exchanger, and then these high temperature streams enter the reactor to start the reforming reactions. Both thermodynamic and experimental studies were carried out on this novel method. Thermodynamic equilibrium models were built for four types of reforming, including dry reforming, bi-reforming, auto-thermal reforming, and tri-reforming. Only dry reforming was experimentally tested. The feasibility of this novel technology was proven by simulated and experimental results. High temperatures significantly promoted the multi-reforming process while avoiding the problem of catalyst deactivation. The experimental results on the direct system also showed that potential improvements in the efficiency of the novel technology could be achieved by optimizing the reforming reactants. Therefore, a continuous system was proposed. Moreover, the power source for the application of CCR systems was also discussed.
Keywords: CO2 emission; CCS; Dry reforming (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211005184
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:9:p:5450-5459
DOI: 10.1016/j.energy.2011.07.045
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().