Low temperature heat source for power generation: Exhaustive analysis of a carbon dioxide transcritical power cycle
Fredy Vélez,
José Segovia,
Farid Chejne,
Gregorio Antolín,
Ana Quijano and
M. Carmen Martín
Energy, 2011, vol. 36, issue 9, 5497-5507
Abstract:
The main results of a theoretical work on the use of a low temperature heat source for power generation through a carbon dioxide transcritical power cycle are reported in this paper. The procedure for analyzing the behaviour of the proposed cycle consisted in modifying the input pressure to the turbine from 66 bar, maintained constant each evaluated temperature (60 °C, 90 °C, 120 °C and 150 °C) until the net work was approximately zero. As a result, the maximum exergy efficiency was 50%, while the energy efficiencies obtained were 9.8%, 7.3%, 4.9% and 2.4% and the net specific work was 18.2 kJ/kg, 12.8 kJ/kg, 7.8 kJ/kg and 3.5 kJ/kg, respectively. Furthermore, the effect of the addition of an internal heat exchanger, which obviously supposed an increase in the efficiency, was analyzed. The analysis of the proposed system shows the viability of implementing this type of process as an energy alternative and/or strengthener of non-conventional energy sources in non-provided zones, or for increasing the energy efficiency in the industry.
Keywords: Carbon dioxide; Energy efficiency; Exergy efficiency; Power generation; Waste heat (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211004750
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:9:p:5497-5507
DOI: 10.1016/j.energy.2011.07.027
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().