EconPapers    
Economics at your fingertips  
 

Modeling and analysis of six-phase synchronous generator for stand-alone renewable energy generation

G.K. Singh

Energy, 2011, vol. 36, issue 9, 5621-5631

Abstract: This paper presents a mathematical model of six-phase synchronous generator (SPSG) for analysis of its transient and dynamic behavior for stand-alone renewable energy generation in conjunction with a hydro power plant. In the analytical model, effect of common mutual leakage reactance between the two three-phase winding sets, and the mutual leakage coupling between d- and q-axis of the two stator windings have been considered. Paper also discusses the applicability of SPSG for supplying two individual loads by presenting the results of analytical and experimental study of transient and steady-state behavior under various operating conditions. It is shown that it can be used to supply two independent three-phase loads. While the interaction between the two windings is inevitable and variation of load at one winding set changes the operating conditions at the other winding, the situation is still satisfactory for a wide range of rural resistive loads.

Keywords: Renewable energy generation; Six-phase synchronous generator; Small hydro power generation scheme (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211004531
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:36:y:2011:i:9:p:5621-5631

DOI: 10.1016/j.energy.2011.07.005

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:36:y:2011:i:9:p:5621-5631