EconPapers    
Economics at your fingertips  
 

Energy input–output analysis and application of artificial neural networks for predicting greenhouse basil production

Reza Pahlavan, Mahmoud Omid and Asadollah Akram

Energy, 2012, vol. 37, issue 1, 171-176

Abstract: In this study, various Artificial Neural Networks (ANNs) were developed to estimate the production yield of greenhouse basil in Iran. For this purpose, the data collected by random method from 26 greenhouses in the region during four periods of plant cultivation in 2009–2010. The total input energy and energy ratio for basil production were 14,308,998 MJ ha−1 and 0.02, respectively. The developed ANN was a multilayer perceptron (MLP) with seven neurons in the input layer, one, two and three hidden layer(s) of various numbers of neurons and one neuron (basil yield) in the output layer. The input energies were human labor, diesel fuel, chemical fertilizers, farm yard manure, chemicals, electricity and transportation. Results showed, the ANN model having 7-20-20-1 topology can predict the yield value with higher accuracy. So, this two hidden layer topology was selected as the best model for estimating basil production of regional greenhouses with similar conditions. For the optimal model, the values of the models outputs correlated well with actual outputs, with coefficient of determination (R2) of 0.976. For this configuration, RMSE and MAE values were 0.046 and 0.035, respectively. Sensitivity analysis revealed that chemical fertilizers are the most significant parameter in the basil production.

Keywords: Basil yield; Input energy; Energy ratio; Artificial neural networks; Prediction; Sensitivity analysis (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211007869
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:37:y:2012:i:1:p:171-176

DOI: 10.1016/j.energy.2011.11.055

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:37:y:2012:i:1:p:171-176