Experimental research on a novel cold storage defrost method based on air bypass circulation and electric heater
Hai-Jiao Yin,
Zhao Yang,
Ai-Qiang Chen and
Na Zhang
Energy, 2012, vol. 37, issue 1, 623-631
Abstract:
Frost accumulation on evaporator decreased cooling capacity and COP (coefficient of performance) of cold storage refrigeration system, so timely and effective defrost was significant to cold storage energy-saving operation. The EHD (electric heat defrosting) method was commonly used in cold storages, however, defrost efficiency of the traditional EHD is rather low, and defrost operation usually caused an unfavorable storage temperature fluctuation, which is harmful to storage quality and shelf-life of stored products. In order to solve the problems existing in the traditional EHD method, a novel defrost method with air bypass circulation and electric heater was proposed for the first time in this paper. Five practical cases of this new method with different defrost heaters and air circulation modes were comparatively studied. The results showed that the case with heater embedded in evaporator fins and air circulating through bypass channel was the optimum implementation way of the new method. Compared with the traditional EHD method, the defrost time of this new method was shortened by 62.1%, defrost energy consumption was reduced by 61.0%, and storage temperature fluctuation was decreased by 70.1%. In addition, the defrost efficiency was up to 77.6%, which was 2.93 times of the traditional EHD method.
Keywords: Cold storage; Defrost method; Electric heater; Energy saving; Defrost efficiency (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211006992
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:37:y:2012:i:1:p:623-631
DOI: 10.1016/j.energy.2011.10.040
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().