Parametric analysis of components effectiveness on desiccant cooling system performance
L.A. Sphaier and
C.E.L. Nóbrega
Energy, 2012, vol. 38, issue 1, 157-166
Abstract:
A number of studies have been conducted for investigating parameters that influence the performance of desiccant cooling systems. Many of these rely on intricate numerical simulations, especially due to coupled non-linear transport equations associated with a desiccant dehumidifier. In this study, a simple numerical procedure for designing desiccant cooling systems has been employed for analyzing the impact of cycle components’ characteristics on the overall system performance. The methodology is based on solving a non-linear algebraic system stemming from heat and mass transfer balances associated with the operation of each component. The required input data involves user-prescribed inlet and room conditions, a regeneration temperature, and cycle components’ effectiveness values. With the proposed methodology, results of different cooling cycles are presented in an informative graphical fashion that can readily be used as a design tool for desiccant cooling systems. The results show that COP values clearly over one can be obtained for ideal ventilation cycles, which have 100% heat wheel effectiveness. Nevertheless, a great reduction, by factors of two and higher, are obtained when this effectiveness is reduced to 0.8. In addition, the results show that a 20–30% decrease in dehumidifier performance can lead to 30–50% reduction in the overall ventilation cycle performance.
Keywords: Desiccant dehumidification; Evaporative cooling; Air-conditioning; Thermal design (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211008139
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:38:y:2012:i:1:p:157-166
DOI: 10.1016/j.energy.2011.12.019
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().