EconPapers    
Economics at your fingertips  
 

Study of a nuclear energy supplied steelmaking system for near-term application

Xing L. Yan, Seiji Kasahara, Yukio Tachibana and Kazuhiko Kunitomi

Energy, 2012, vol. 39, issue 1, 154-165

Abstract: Conventional steelmaking processes involve intensive fossil fuel consumption and CO2 emission. The system resulting from this study ties a steelmaking plant to a nuclear plant. The latter supplies the former all energy and feedstock with the exception of iron ore. The actual design takes on a multi-disciplinary approach: The nuclear plant employs a proven next-generation technology of fission reactor with 950 °C outlet temperature to produce electricity and heat. The plant construction saving and high efficiency keep the cogeneration cost down. The steelmaking plant employs conventional furnaces but substitutes hydrogen and oxygen for hydrocarbons as reactant and fuel. Water decomposition through an experimentally-demonstrated thermochemical process manufactures the feedstock gases required. Through essential safety features, particular a fully-passive nuclear safety, the design achieves physical proximity and yet operational independence of the two plants to facilitate inter-plant energy transmission. Calculated energy and material balance of the integrated system yields slightly over 1000 t steel per 1 MWt yr nuclear thermal energy. The steel cost is estimated competitive. The CO2 emission amounts to 1% of conventional processes. The sustainable performance, economical potential, robust safety, and use of verified technological bases attract near-term deployment of this nuclear steelmaking system.

Keywords: Energy system; Nuclear fission; Emissions; Hydrogen production; Cogeneration; Steelmaking (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212000527
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:39:y:2012:i:1:p:154-165

DOI: 10.1016/j.energy.2012.01.047

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:39:y:2012:i:1:p:154-165