EconPapers    
Economics at your fingertips  
 

Effects of pyrolysis temperature on changes in fuel characteristics of biomass char

Sang-Woo Park and Cheol-Hyeon Jang

Energy, 2012, vol. 39, issue 1, 187-195

Abstract: The fuel characteristics, the combustion profile, and the kinetic study of char that had been pyrolyzed at 300−500 °C were investigated for RH (rice husks), WC (wood chips), and WP (wood pellets). When a higher pyrolysis temperature was used, the calorific value became proportional to the fuel ratio and inversely proportional to that of the volatile matter. The pyrolysis temperature increased, the coal-band migrated toward that of coal. The number of DTG (differential thermogravimetric) peaks decreased from two to one with an increase in pyrolysis temperature. When WP was blended with coal, the unprocessed samples (WP Raw) showed two DTG peaks for all co-combustion ratios, but WP 400 (pyrolyzed at 400 °C) showed one DTG peak and a lower activation energy for all co-combustion ratios. It was observed that the combustion reaction mechanism of the WP Raw/coal-blended samples was similar to the third-order reaction model (O3) in the primary reaction (devolatilization stage), and to the diffusion model (D2–D4) in the secondary reaction (char combustion stage). On the other hand, it was thought that the secondary reaction of the WP 400/coal-blended samples had a reaction mechanism most similar to a first-order reaction (O1) at all co-combustion ratios.

Keywords: Biomass; Pyrolysis; Fuel characteristics; Combustion parameters (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212000369
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:39:y:2012:i:1:p:187-195

DOI: 10.1016/j.energy.2012.01.031

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:39:y:2012:i:1:p:187-195