Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials
Lei Zhang,
Jiaoqun Zhu,
Weibing Zhou,
Jun Wang and
Yan Wang
Energy, 2012, vol. 39, issue 1, 294-302
Abstract:
Graphite nanoplatelets (GnPs), obtained by sonicating the expanded graphite, were employed to simultaneously enhance the thermal (k) and electrical (σ) conductivity of organic form-stable phase change materials (FSPCMs). Using the method of in situ polymerization upon ultrasonic irradiation, GnPs serving as the conductive fillers and polyethylene glycol (PEG) acting as the phase change material (PCM) were uniformly dispersed and embedded inside the network structure of polymethyl methacrylate (PMMA), which contributed to the well package and self-supporting properties of composite FSPCMs. X-ray diffraction and Fourier transform infrared spectroscopy results indicated that the GnPs were physically combined with PEG/PMMA matrix and did not participate in the polymerization. The GnPs additives were able to effectively enhance the k and σ of organic FSPCM. When the mass ratio of GnP was 8%, the k and σ of FSPCM changed up to 9 times and 8 orders of magnitude over that of PEG/PMMA matrix, respectively. The improvements in both k and σ were mainly attributed to the well dispersion and large aspect ratio of GnPs, which were endowed with benefit of forming conducting network in polymer matrix. It was also confirmed that all the prepared specimens possessed available thermal storage density and thermal stability.
Keywords: Graphite nanoplatelets; Form-stable phase change material; Self-supporting; Thermal conductivity; Electrical conductivity (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212000163
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:39:y:2012:i:1:p:294-302
DOI: 10.1016/j.energy.2012.01.011
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().