Theoretical and practical analysis of an integrated solar hot water-powered absorption cooling system
J. Darkwa,
S. Fraser and
D.H.C. Chow
Energy, 2012, vol. 39, issue 1, 395-402
Abstract:
Evaluation of a typical integrated solar absorption cooling system has been carried out to determine its overall performance. Analysis of the results revealed an operational efficiency of 61% for the solar collectors at a mean differential temperature (ΔT) of 51 °C as compared with the manufacturer’s rating of 70% at a ΔT of 60 °C. The absorption chiller did however perform quite satisfactorily and achieved a coefficient of performance (COP) of 0.69 as compared with the manufacturer’s rating of 0.7 despite the slight deviation at the collectors end. The installation strategy for the hot water storage tanks also appears to have achieved its objective of maintaining controlled temperature stratification in the tanks. It could therefore be concluded that the system has proved its potential as a viable cooling technology for application in buildings. However, in order to maintain appropriate hot water supply temperature during low solar radiation levels, supplementary heat source such as gas or biomass fired system would have to be considered and incorporated into solar absorption cooling systems.
Keywords: Solar air conditioning; Absorption; Evacuated tube collector; COP (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211008711
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:39:y:2012:i:1:p:395-402
DOI: 10.1016/j.energy.2011.12.045
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().