Life cycle assessment-based selection for a sustainable lightweight body-in-white design
Ahmad T. Mayyas,
Ala Qattawi,
Abdel Raouf Mayyas and
Mohammed A. Omar
Energy, 2012, vol. 39, issue 1, 412-425
Abstract:
Nowadays life cycle tools namely; Life Cycle Assessment (LCA), Life Cycle Costing (LCC), and Life Cycle Optimization (LCO) are being used to assess new vehicular structures from sustainability and design for the environment perspectives. This manuscript implements a Life Cycle Assessment (LCA) based design approach to assess the performance of vehicular Body-In-White’s (BIW) through its complete life cycle. The proposed LCA model will aid in the early design stages (i.e. conceptual design stage) serving as an eco-design decision-making support tool. This study provides a complete life cycle assessment covering the extraction and the processing of virgin materials, the manufacturing, the use and maintenance stage, the end-of-life stage, in addition to the fuel extraction and production stages. Traditional LCA studies do not usually consider the latter stages which accounts for a significant portion of the energy consumed and the generated CO2 emissions. This study results show that the material selection for vehicular applications is a sensitive process not only to the vehicle lifetime (as expressed in traveled miles), but also to the environmental burdens from the extraction stage and recyclability efforts. Additionally, the proposed study shows the effect of the different materials choices on the vehicle structure functionality.
Keywords: Design for sustainability (DFS); Environment; Material selection; Life cycle assessment LCA (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211008589
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:39:y:2012:i:1:p:412-425
DOI: 10.1016/j.energy.2011.12.033
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().