EconPapers    
Economics at your fingertips  
 

Energetic optimization of wet air oxidation process using experimental design coupled with process simulation

Sébastien Lefevre, Jean-Henry Ferrasse, Rémy Faucherand, Alain Viand and Olivier Boutin

Energy, 2012, vol. 41, issue 1, 175-183

Abstract: Wet air oxidation process (WAO) is used for wastewater treatment, especially when it contains high chemical oxygen demand. With non-catalytic processes, temperatures between 200 and 350 °C and pressures between 15 and 30 MPa are generally applied. A method, based on the coupling of simulations and experimental design, is used to compare and optimize two reactors (adiabatic and isotherm), their volume being equal and fixed. The interest of an experimental design approach is to plan simulation and to present results in immediate response surface. Four parameters have been selected; temperature, pressure, chemical oxygen demand, air ratio. After achieving the 25 simulations of the “numerical design”, mass and energy balances were analysed through two energetic values integrated as the design responses: exergetic efficiency and minimum heat required by the process for the functioning. The surface response methodology determines which are the most influencing parameters on design responses. It also shows that temperature of reaction and air ratio are the most influencing parameters. At least elements to calculate the cost of the plant, for both reactors are given. Both reactors allow to get complete degradation of pollutants, but strategy of investment and control are opposite.

Keywords: Wet air oxidation; Experimental design; Energetic efficiency; Exergy (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211006530
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:41:y:2012:i:1:p:175-183

DOI: 10.1016/j.energy.2011.09.043

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:41:y:2012:i:1:p:175-183